ISI BANGALORE

Algebra IV

100 Points

Notes.

(a) Justify all your steps. You may use any result proved in class unless you have been asked to prove the same.

(b) \mathbb{N} = natural numbers, \mathbb{Z} = integers, \mathbb{Q} = rational numbers, \mathbb{R} = real numbers, \mathbb{C} = complex numbers.

(c) \mathbb{F}_{p^n} denotes a finite field having p^n elements.

1. [15 points] Let $K = \mathbb{Q}(\alpha)$ where α is a root of $x^3 - 2x - 1$. Determine the irreducible polynomial for $\gamma = 1 + \alpha^2$ over \mathbb{Q} .

2. [15 points] Prove that the regular pentagon can be constructed by ruler and compass.

3. [20 points] In each of the following cases, for each integer n > 0, determine the number of irreducible factors of degree n for the polynomial $x^{64} - x$ over the given field.

(a) \mathbb{F}_2 (b) \mathbb{F}_4 (c) \mathbb{F}_8 (d) \mathbb{F}_{16}

4. [20 points] Suppose $k \to F$ and $k \to L$ are extensions of fields with F/k algebraic.

- (i) If L is algebraically closed, prove that there is a k-linear homomorphism $F \to L$.
- (ii) Is the homomorphism in (i) necessarily unique? Prove or disprove.

5. [15 points] Let k be a field and let $X_1, \ldots, X_m, Y_1, \ldots, Y_n$ be independent variables. Let $L = k(\{X_i, Y_j\})$ be the field generated by these variables. Set $\alpha_{ij} := X_i Y_j$. Determine a transcendence basis for the subfield $F = k(\{\alpha_{ij}\})$ over k.

6. [15 points] Express $x^3y^3 + x^3z^3 + y^3z^3$ as a polynomial expression in the elementary symmetric polynomials in x, y, z.